

## Learning the Energy Consumption Behavior of Users by Clustering

Michela Milano, Marco Patella, Cristina Lelli

DISI – Università di Bologna



# Our role in the project



Analyze the huge amount of data derived from devices installed in houses of trial users



- User Profiling with the goal of:
  - Advising
  - Appliances scheduling
  - Reverse engineering of energy consumptions





 Starting from data readings coming from "smart appliances" and "smart plugs"

- Derive a user profile
- Highlighting (possibly existing) habits
- According to the existence of "similar" energy consumptions
  - Daily
  - Weekly
  - Monthly
- Users can then be grouped according to the "similarity" of relative profiles



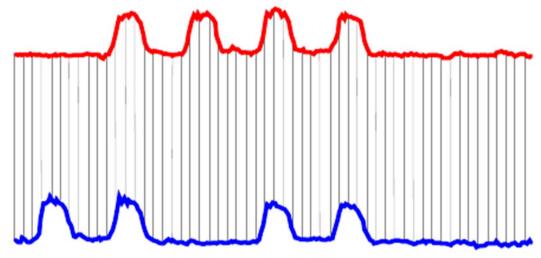




## The user profile

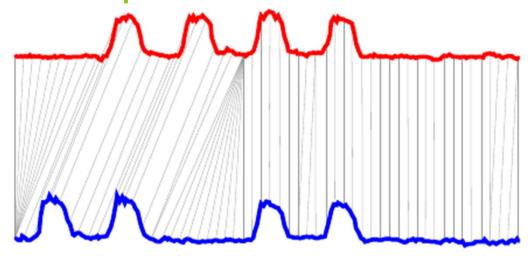


- The profile of a user can be useful for:
  - Suggesting the user more "appropriate" habits (e.g., for saving money)




 Scheduling the activation of some appliances, according to forecasted consumptions and/or to the presence of micro-generation




 In case smart appliances or plugs are not available, modeling the usage of appliances, by analyzing current energy consumption





- Comparison between daily/weekly/monthly energy consumptions, yielding a similarity value
- This can be done by comparing energy consumption at each time interval
- This is very sensitive to the presence of "time shifts" in the consumptions





- By using Dynamic Time Warping, we can grade as similar two series, even if they are non-perfectly aligned
- We can control the amount of "warping", e.g. to avoid matching "distant" consumptions



- A habit is a sufficiently large group of sufficiently similar consumptions (DBScan)
- We can control the amount of both "sufficiently"
- Advantages:
  - General application (we can change the notion of similarity maintaining the clustering algorithm)
  - Simplicity of parameters (e.g. number of clusters is an output, not an input)



- Disadvantages:
  - A cluster could include series that are (very) different if they are both similar to a third series (and so on)
- We form clusters only considering series that are all sufficiently similar to each other (a completely connected subgraph in the connectivity graph)
- This does not define a partition
  - Acceptable, since an user could be part of several "groups" of users



#### What's next?

- We (deliberately) ignore demographic aspects for clustering purposes
  - Such information can be used a-posteriori,
    e.g. to derive characteristics shared by users in a single cluster
  - This could help in classifying a new user, for which we do not have any consumption data, without the need for training the system